Month: February 2026

  • Zeta summation VI

    If we want to calculate \zeta(-2) for example we need to have a proper value for \Gamma(s/2) in for Re(s) \leq 0. The problem is that the Bernoulli representation of the Gamma function presented above:

    \displaystyle \Gamma(s) = \int_{0}^{\infty} e^{-t} t^{s-1}\,dt

    is only valid for Re(s) > 0. We have to provide another representation of the Gamma function for negative values of s:

     \Gamma(s) = \int_{0}^{\infty} e^{-t}\, t^{s-1}\, dt
     = \int_{1}^{\infty} e^{-t}\, t^{s-1}\, dt + \int_{0}^{1} e^{-t}\, t^{s-1}\, dt
     = \int_{1}^{\infty} e^{-t}\, t^{s-1}\, dt + \int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} t^{n+s-1}\, dt
     = \int_{1}^{\infty} e^{-t}\, t^{s-1}\, dt + \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_{0}^{1} t^{n+s-1}\, dt
     = \int_{1}^{\infty} e^{-t}\, t^{s-1}\, dt + \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left[ \frac{t^{n+s}}{n+s} \right]_{0}^{1}
     = \int_{1}^{\infty} e^{-t}\, t^{s-1}\, dt + \sum_{n=0}^{\infty} \frac{(-1)^n}{n!\,(n+s)}

    The sum \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+s)} exists for negative s except for s= -1,-2,-3,... This implies that \frac{1}{\Gamma(s/2)} is entire with simple zeros at s= -2,-4,-6,.... The simple pole of \xi(s) at zero is cancelled by the corresponding zero of \frac{1}{\Gamma(s/2)}. As a consequence the only singularity of \zeta(s) is a single pole at s=1. Since

    \displaystyle \zeta(s) = \pi^{s/2}\frac{\xi(s)}{\Gamma(s/2)}

    and \frac{1}{\Gamma(s/2)} is entire with simple zeros at s= -2,-4,-6,..., this implies that for example:

    \displaystyle \zeta(-2) = 0

    We have in general

    \displaystyle \zeta(-2n)=0

    The so-called “trivial zeros” of the Zeta function. They occur at the negative even integers.